
Copyright 1999 by the European Union Control Association (EUCA). This paper was published in the proceedings of the 5th European Control Conference,
Karlsruhe, Germany, 1999, and is made available as an electronic reprint by the permission of EUCA.

Abstract—Failure mode analysis for complex systems is an
important, and sometimes challenging, task. In this paper, a
method for failure mode analysis based on Multilevel Flow
Models (MFM) is presented. When an MFM model of the
system exists, it is possible to perform an automated failure
mode analysis, and even to give failure predictions in an on-
line system in real time. The system is implemented in a
version of the MFM Toolbox, a program for editing and
testing MFM models on a Windows-based PC.

I. INTRODUCTION

When designing a complex industrial system, it is often
important to study the effects of failures on other parts of
the system. Traditionally, this has been done using manual
methods, by filling out forms by hand, such as the Failure
Mode and Effects Analysis method (FMEA). Some
methods with automated computer support have evolved,
such as the Fault Tree Analysis method (FTA), and the
Goal Tree - Success Tree method (GTST). There are also
tools available to automate parts of an FMEA analysis, see
[10]. All these methods will collectively be called Failure
Mode Analysis methods, or FMA methods for short, in this
paper. An overview of some methods is available in [2].
GTST is described in [9], and FTA is described in [1].

A problem with many of these methods is that it is not
possible to analyze several failures at the same time. Also,
since the methods are mostly manual, it is possible to miss
important scenarios during the analysis. Another important
aspect is what will happen if the process is changed — how
will the new system behave? Are the previously obtained
results still valid for the new process? These questions can
be difficult to answer, and they may require that the whole
analysis be done all over again.

Model-based methods have an advantage in this
scenario, especially with computer support. The part
requiring most work — the construction of the model — is
already done. What is needed is to change the part of the
model that is affected by the restructuring of the process,
after which all the original cases plus any new ones may be
evaluated again. This will require less time and effort
compared to a manual analysis, since the analysis itself is
mostly automated.

What is described in this paper is a new method for
failure mode analysis based on Multilevel Flow Models
(MFM) [8]. MFM is a graphical modeling language for
systems of flows of mass, energy, or information, and is a

good base for several diagnosis algorithms, such as alarm
analysis and measurement validation, see [3]. Thus, if an
MFM model of the system exists, it can be used for several
other diagnosis algorithms, thereby increasing the value of
the model. The FMA method developed for MFM has many
nice properties, such as the possibility for on-line prediction
of failures in real time, and it would make a nice
complement to the traditional FMA methods.

II. ABOUT FAILURE MODE ANALYSIS

The purpose of performing a failure mode analysis is to
investigate the effects of one or several failures in a system.
This can be done using several methods, among the most
well-known are FMEA and FTA (see part I). The general
idea with these methods is to find all possible failures of a
system, and to relate these to each other so that the effects
or causes of a fault can be determined. This can be done
using a graph, such as the one in Figure 1. Here, the faults
numbered 1 to 4 are called “basic faults,” and the
combination of one or several basic faults leads to larger
faults. The analysis is then performed by starting with a
large fault, and then investigating the tree to find the basic
faults leading to this failure.

Fault #1

Fault #2

Fault #3

Fault #4

Fault #5

Fault #6

Figure 1. An example of a fault tree.

A shortcoming with the common methods for failure
mode analysis is that the analysis is often done during the
design phase for the system, and the results of the analysis
are not easily retrievable by the operators during operation.
It may also be the case that some of the failure modes are
not analyzed, due to insufficient effort in the analysis. With
these thoughts in mind, it is easy to see that an on-line, real

FAILURE MODE ANALYSIS USING
MULTILEVEL FLOW MODELS

Bengt Öhman*

* Department of Information Technology, Lund Institute of Technology, Box 118, 221 00 Lund, Sweden.
 Fax: +46 46 222 4714, E-mail: bengt@it.lth.se

time FMA system would be advantageous. Such a system
would be able to provide the operators with predictions of
future failures based on the current state of the system. The
FMA algorithm for MFM is capable of both off-line and
on-line analysis, and could be used in both the design phase
for a system, and when the system is running.

III. ABOUT MFM

Multilevel Flow Models were invented by professor Morten
Lind [8], and they are primarily used for modeling goals
and functions and their relations of technical systems.
However, the MFM models make an excellent base for
diagnostic reasoning, and several algorithms have been
developed. MFM models describe the goals and functions
of a system. The goals describe the purposes of running the
system (the answer to the question “why?”), and the
functions describe the capabilities of the system (the answer
to the question “how?”). The functions are connected in
terms of flows of mass, energy, or information. The flow
structures are connected into networks, to which the goals
are attached. The functions are realized by components,
which are the physical objects in a system.

The connection between the networks and the goals are
called achieve relations, because they indicate that goals are
achieved when the flow functions in the connected
networks are working. There are also condition relations,
which tells that a certain goal has to be achieved for the
conditioned function to be available.

Goals
The goals in an MFM model describe the intentional goals
of running a system. Examples of goals are “keep the water
level within an acceptable range,” “produce electrical
power,” and “cool the pump.” Without knowing the true
goals of running a system, it is practically impossible to
build a good MFM model of the system, since the whole
purpose of the system is to fulfill the goals.

Components
The components represent the physical structures of a
system. This can be, for example, a piece of pipe, a water
tank, or an accumulator. The components are usually not
shown in an MFM model.

Functions
The functions in MFM represent the capabilities of a
system, such as “transport water,” “supply electricity,” or
“prevent transport of radiation.” The functions may or may
not be associated with a physical component in the system.
A component may also be associated with several functions.
An electrical pump, for example, may have both the
function of transporting water, and the function of acting as
a sink for electrical energy. The MFM functions are these:

• A source is a function that is capable of providing an

unlimited amount of mass or energy.
• A sink is a function that acts as a drain of mass or

energy.

• A transport is a function that is capable of transporting
mass, energy, or information.

• A barrier is a function that is capable of preventing the
transport of mass, energy, or information.

• A storage is a function that is capable of storing mass
or energy.

• A balance is a function that connects one or more
inflows to one or more outflows.

• An observer is a function that translates sensor values
to information.

• A decision is a function that represents control actions
by humans or automatic controllers.

• An actor is a function that can transform information
into physical actions.

• A manager is a function that is used to represent
management of a system, for example PID-controllers,
human operators, etc.

These functions are shown in Figure 2.

Observer

Decision

Actor

Manager

Goal

Source

Sink

Transport

Barrier

Storage

Balance
Figure 2. The symbols that represent MFM
functions.

Relations
A set of connected flow functions is called a network . To
the networks, goals can be connected via achieve relations.
When a certain condition is met (such as “all the functions
in the network are working properly”), the connected goals
are said to be achieved.

In order for a certain function to be available, some
goals may have to be achieved. This is expressed by using
condition relations. These relations connect a goal with a
function. There may be several conditions emanating from a
goal, and several conditions may be connected to a
function.

In order to express management functions, there is also
a relation called an achieve-by-management relation . This
is used to express the fact that the flow functions need some
kind of management (automatic or by an operator) to
function as designed.

These relations are shown in Figure 3.

Network

Achieve
relation

Condition
relation

Achieve-by-
management
relation

Figure 3. The relations between the MFM objects.

An Example of an MFM Model
To illustrate how MFM is used, an example is presented
here. The system, which is shown in Figure 4, consists of an
engine, and a cooling system. The cooling fluid is pumped
by an electrical pump, and the pump needs lubrication in
order to work. The engine runs o n gasoline and oxygen, and
if the cooling system breaks down, the engine will overheat
and stop functioning. The cooling fluid in this system is
water.

Power

Gasoline

Lubricant

Engine

Pump

Oxygen

Figure 4. An engine which runs on gasoline and
oxygen. The engine needs a cooling system, and
the circulator pump in the cooling system needs
electrical power and lubricant.

This is not an example taken from a real system, but it
is adequate for demonstration purposes. In order to create
an MFM model of this system, the important questions to
ask are “what are the goals of the system,” and “what
functions are available in the system.” Several goals can be
found for this system, but in this case let us concentrate on
these five:

• Keep engine running. This is the main goal of the

system.
• Supply gas. Gasoline is needed for the engine to work.
• Cool engine. The engine needs cooling in order to

work.
• Lubricate pump. The pump needs lubrication.
• Supply power to pump. The pump needs electrical

power.

The functions that can be found in this model are for

example “gasoline supply,” “gasoline transport,” “water
transport,” and “lubricant source.” An MFM model of this
system is shown in Figure 5.

The network marked “E1” is a model of the energy
balance in the engine. To the left are two sources of energy.
The top source is the oxygen supply (the air), and the
bottom source is the gasoline supply. In the middle of the
network, there is an energy balance where the chemical
energy of the gasoline and oxygen is transformed into
kinetic energy and heat energy. The kinetic energy is
absorbed by the top sink, and the heat energy is absorbed by
the bottom sink. If all of these functions work, the top goal
(“keep engine running”) is achieved.

There are two conditions going up to the top network.
The one to the left states that in order for the chemical

energy of the gasoline to be available, the gasoline transport
from the tank to the engine must be working. The one to the
right states that the heat energy sink can not work unless the
cooling system is working.

Keep engine
running

Supply gas Cool engine

Lubricate
pump

Supply
power to
pump

E1

M1 M2

M3 E2

Figure 5. An MFM model of the example system.

The network marked “M1” is a model of the physical
transport of gasoline from the tank to the engine. The
network marked “M3” is a model of the physical transport
of lubricant to the pump. The network marked “E2” is a
model of the transport of electrical power to the pump.

The network marked “M2,” finally, is a model of the
circulation of water in the cooling system. The leftmost
transport in the network is a model of the pump, and the
storage in the middle is a model of the heat exchanger in the
engine. Both the source function and the sink function are
models of the other heat exchanger element. This could of
course be expressed by modeling the source and the sink in
this network as a single storage, and creating a circular flow
in the network instead of a straight one, but in this model
the straight flow was chosen.

IV. ALGORITHMS FOR MFM

Several algorithms and methods have been developed for
use with MFM models. Three of these, measurement
validation, fault diagnosis, and alarm analysis, by Larsson
[3, 5], have been implemented in the MFM Toolbox, a
program for Windows 95 and NT. The MFM Toolbox is a
tool for creating, editing and testing MFM models, and is a
good base for adding new algorithms.

The measurement validation algorithm uses measured
flow values together with the MFM model to check that the
flow values are consistent with the model. The fault
diagnosis algorithm is similar to a backward chaining
expert system, but the inherent structure of an MFM model
guarantee that the diagnosis will be completed in linear (or
sub-linear) time. This is advantageous for real time systems,
see [4]. The algorithms have successfully been used in
several projects, see [6, 7].

The alarm analysis algorithm will be described in
detail, because the FMA algorithm relies on certain aspects
of this algorithm.

Alarm Analysis Using MFM
Most industrial processes are equipped with a large number
of sensors. The sensors are all connected to some form of
alarm, so that the operators can know when something goes
wrong. However, in case of a major fault, many of the
alarms may trigger at the same time. This may overload the
operators with alarms, and the real cause of the fault may be
drowned among all the secondary faults. This is a
potentially dangerous situation, and the alarm analysis
algorithm for MFM is designed to separate the primary
faults from the secondary faults in order to reduce the
number of alarms presented to the operator.

The algorithm works by associating discrete alarm
states, such as “low flow” and “high volume,” with each
flow function in the MFM model. Due to the semantic
interpretations of the MFM flow functions, it is possible to
conclude that certain faults may cause consequential faults
in connected flow functions. The method uses a set of
causation rules to check each pair of flow functions, to
separate the faults that must be primary from the faults that
may be consequences of the primary faults. However, the
method does not guarantee that the faults marked as
secondary are not in fact primary faults. There can be
hidden primary faults that look as if they were caused by
another primary fault, and which are therefore classified as
secondary. Therefore, the algorithm only sorts the faults
into the classes “primary” and “secondary or hidden
primary.”

An example of how the algorithm works is given
below. Figure 6 describes a closed tank connected to a
pump.

Figure 6. A closed tank, with an inflow and an
outflow. The outflow of the tank is connected to a
pump.

In this simple system, it is reasonable to assume that a
too low volume in the tank may cause a too low flow
through the pump. In addition, a too low flow through the
pump may cause a too high volume in the tank. There is
also the possibility that a too high volume in the tank may
cause a too high flow through the pump, and that a too high
flow through the pump may cause a too low volume in the
tank. These four causation rules describe how one fault
may cause another.

Now, assume that the tank becomes empty, and
therefore a level alarm is activated. Because of the low level
in the tank, the pump flow will become too low, and
activate another alarm. By using the first rule above, it is
possible to conclude that the low volume in the tank is the

cause for both alarms, the primary fault, whereas the low
flow through the pump is a consequential, or secondary
fault. The alarm analysis algorithm uses a set of rules like
these for every legal MFM connection to find out which
alarms are primary and which are secondary.

In the MFM representation, the situation described here
would be modeled like in Figure 7.

Tank Pump

Figure 7. A model of the tank-pump system.

The MFM functions have, as described above,
associated alarm states. The storage function can be in one
of three alarm states, namely “normal,” “high volume”
(hivol), or “low volume” (lovol). The transport function can
be in the states “normal,” “high flow” (hiflow), or “low
flow” (loflow). The states are set by rules of the following
form: “if the flow through the transport is less than a
threshold value flo, set the alarm state of the transport to
loflow .” The threshold value can be statically set in
advance, or updated dynamically for example when the
state of the process changes.

The causation rules for the tank-pump system can now
be written using only MFM functions and their associated
alarm states:

1. A storage lovol may cause a downstream transport to

have a loflow .
2. A transport loflow may cause an upstream storage to

have a hivol.
3. A storage hivol may cause a downstream transport to

have a hiflow .
4. A transport hiflow may cause an upstream storage to

have a lovol.

Similar rules have been derived for all legal MFM

connections, and they are described in detail in [3, 5]. Since
there are only a limited number of legal MFM connections
and a discrete number of states, it is possible to store the
causation rules in a table. The alarm analysis algorithm
looks at each pair of MFM functions, and if both functions
are in an alarmed state, the table is used to conclude which
function has a primary alarm, and which has a secondary
(consequential) alarm. If only one of the two functions is
alarmed, the alarmed function is primary.

A special case occurs when a function does not have a
connected sensor (the function is said to be unmeasured).
Since it is then impossible to know the real state of the
function, the alarm analysis algorithm uses the state of the
connected functions to guess the state of the unmeasured
function. This is done using the same table as described
above, and the method is called consequence propagation .
For example, in the situation described above, if the flow
through the pump is not measured and the volume in the
tank is low, the consequence propagation rules will guess
that the flow through the pump is low.

It should be noted that because of the inherent structure
of the MFM models, it is always sufficient to only look at

two connected functions at a time. This is important, since
it allows the complexity of the algorithm to be kept linear,
or even sub-linear, with regard to the size of the model.

V. FAILURE MODE ANALYSIS USING MFM

The failure mode analysis I have developed for MFM is
based on the consequence propagation used in the alarm
analysis algorithm by Larsson [3], expanded with timing
information associated with condition relations and
storages. An important fact here is that the consequence
propagation in the alarm analysis algorithm will stop as
soon as a function with a sensor reading which is in the
normal range is found. In the FMA algorithm, the
consequence propagation will not stop until the whole
model has been searched, because of the assumption that
the functions that seem to be working now may stop
working in the future. The motives for associating the
timing information with only storages and condition
relations were:

• Failures will take time to propagate between MFM

networks.
• Storages often have an intrinsic capability to delay the

propagation of failures within a network.
• Adding time delay information to all functions and

relations would be unfeasible in terms of modeling
effort.

The points above may be debatable, since there are

most often propagation delays in other functions as well.
However, these objects were carefully chosen because the
method will give good results without any serious
drawbacks with this setup.

The timing information needed for an analysis must be
either derived from simulated cases, derived from stored
real process data, or estimated by hand. Often, the last
option is the only one available, but the method may result
in useful data even if the exact timings are slightly wrong.
The same problems arise for all FMA methods that are
based on timings, so this is not in any way unique for the
MFM version. The method described here has been
implemented in a version of the MFM Toolbox, see section
IV.

Assignment of Timing Information
When the MFM model is built in the MFM Toolbox, it is
possible to assign timing information to each storage and to
each condition relation. In the current version of the
algorithm, all conditions emanating from the same goal will
have the same delay. This is currently under evaluation, and
may be changed in the future so that each condition has its
own timing delay. The timings are printed next to the
function, as shown in Figure 8.

Here, the following is assumed:

• If the gasoline support fails, the engine will stop
directly.

• If the engine cooling fails, the engine will run for
twenty minutes.

• If the lubrication of the pump stops, the pump will fail
after ten minutes.

• If the power to the pump fails, the pump will fail
immediately.

• If the pump fails, the stored water in the engines heat
exchanger will last for five minutes.

These timings are not taken from any real situation, but

they are adequate for this example.

Keep engine
running

Supply gas Cool engine

Lubricate
pump

Supply
power to
pump

E1

M1 M2

M3 E2

10 0

0

0 20

5

Figure 8. An MFM model of the engine with
timing information visible.

An FMA Run
After the timing information is entered into the model, it is
possible to run test cases. This is done in the following way:
first, the user inputs the start state (the state of the system at
time zero), by asserting failures in one or more functions.
Then, the analysis is started by a user command, and the
result is presented on the screen. An example of this is
shown in Figure 9. Here, the initial failure is that the
lubricant has run out. The result of this is that the pump will
fail due to lack of lubricant, and after a while the engine
will fail due to lack of cooling. After the complete FMA run
has been performed, the program will collect these failures
and generate a list of all functions with alarmed sensors,
sorted in order of time -to-failure. This is exemplified in
Figure 10.

The Algorithm in Pseudocode
The algorithm works by assigning new state informa tion to
each function in the MFM model. The new information
consists of a time stamp, called failure time, which holds
information on when the function will fail. There is also a
variable called current failure time , which is used during
the traversal of the model. It is used to keep track of the
current “time” in the system. In pseudocode, the algorithm
for failure mode analysis looks like this:

For each function with an alarmed sensor:
• Set the failure time of the function to 0.
• Propagate the alarms as far as possible according to the

rules in the alarm analysis algorithm. Set the failure
time of the currently examined function to the current
failure time, if the function has not been reached before
or if the failure time stored for the function is larger
than the current failure time.

• Update the current failure time when passing
conditions and storages.

• Stop the propagation if the failure time of the currently
examined function is less than the current failure time.

Keep engine
running

Supply gas Cool engine

Lubricate
pump

Supply
power to
pump

E1

M1 M2

M3 E2

10

0

30

10

0 0 0

10 1510 15

3030303030

30 30 30 30

Figure 9. Example of an FMA run. This is a
situation where the lubricant runs out, and the
impacts of this on the system.

Results of Failure Mode Analysis
================================

T = 0
 F8: "Lubricant source"
 F9: "Lubricant transport"

T = 10
 F1: "Water pump"
 F2: "Engine heat exchanger"

T = 30
 F11: "Gasoline supply"
 F17: "Kinetic energy sink"
 F19: "Heat energy sink"

Figure 10. The textual output from the FMA run.
The measured MFM functions that failed are
sorted in time order. The list of functions at time
T = 0 are the initially failed functions. Here, the
algorithm has predicted that, for example, the
water pump will fail within ten minutes.

VI. CONCLUSIONS

A new method for failure mode analysis based on MFM has
been developed. The method takes a given situation as
input, and outputs a list of predicted time -to-failure values

for the affected parts of the system. The method has certain
advantages compared to traditional methods, for example
the possibility to build a system for on-line real time failure
prediction with this method. The algorithm has been
implemented and tested in the MFM Toolbox, a program
for editing and testing MFM models.

VII. ACKNOWLEDGMENTS

The author wishes to thank Jan Eric Larsson and Fredrik
Dahlstrand at the Department of Information Technology
for helpful advice during the development of this algorithm.
Thanks also go to Gordon Broderick, Noranda Corporation,
for the inspiration that led to the algorithm.

VIII. REFERENCES
[1] D. J. Allen, M. S. M. Rao, “New Algorithms for the

Synthesis and Analysis of Fault Trees,” Industrial and
Engineering Chemistry: Fundamentals, vol. 19, no. 1, pp.
79–85, 1980.

[2] A. Jalashgar, Identification of Hidden Failures in Process
Control Systems through Function-Oriented System Analysis ,
Doctor’s thesis, Risø–R–936(EN), Risø National Laboratory,
Roskilde, Denmark, 1997.

[3] J. E. Larsson, Knowledge-Based Methods for Control
Systems , Doctor’s thesis, TFRT –1040, Department of
Automatic Control, Lund Instit ute of Technology, Lund,
1992.

[4] J. E. Larsson, “Hyperfast Algorithms for Model-Based
Diagnosis,” Proceedings of the IEEE/IFAC Joint Symposium
on Computer-Aided Control Systems Design, Tucson,
Arizona, 1994.

[5] J. E. Larsson, “Diagnosis Based on Explicit Means-End
Models,” Artificial Intelligence, vol. 80, no. 1, pp. 29–93,
1996.

[6] J. E. Larsson, B. Hayes-Roth, D. M. Gaba, “Goals and
Functions of the Human Body: An MFM Model for Fault
Diagnosis,” IEEE Transactions on Systems, Man, and
Cybernetics , vol. 27, no. 6, pp. 758–765, 1997.

[7] J. E. Larsson, B. Hayes-Roth, D. M. Gaba, B. E. Smith,
“Evaluation of a medical diagnosis system using simulator
test scenarios,” Artificial Intelligence in Medicine, vol. 11,
pp. 119–140, 1997.

[8] M. Lind, “Representing Goals and Functions of Complex
Systems — An Introduction to Multilevel Flow Modeling,”
Technical report, 90–D–38, Institute of Automatic Control
Systems, Technical University of Denmark, Lyngby, 1990.

[9] M. Modarres, “Functional Modeling of Complex Systems
Using a GTST-MPLD Framework,” Proceedings of the
International Workshop on Functional Modeling of Complex
Technical Systems, Ispra, Italy, 1993.

[10] C. J. Price, D. R. Pugh, N. Snooke, J. E. Hunt, M. S. Wilson,
“Combining Functional and Structural Reasoning for Safety
Analysis of Electrical Designs,” Knowledge Engineering
Review, vol. 12, no. 3, pp. 271–287, 1997.

