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Abstract—Failure mode analysis for complex systems is an 
important, and sometimes challenging, task. In this paper, a 
method for failure mode analysis based on Multilevel Flow 
Models (MFM) is presented. When an MFM model of the 
system exists, it is possible to perform an automated failure 
mode analysis, and even to give failure predictions in an on-
line system in real time. The system is implemented in a 
version of the MFM Toolbox, a program for editing and 
testing MFM models on a Windows-based PC. 

I. INTRODUCTION 

When designing a complex industrial system, it is often 
important to study the effects of failures on other parts of 
the system. Traditionally, this has been done using manual 
methods, by filling out forms by hand, such as the Failure 
Mode and Effects Analysis method (FMEA). Some 
methods with automated computer support have evolved, 
such as the Fault Tree Analysis method (FTA), and the 
Goal Tree - Success Tree method (GTST). There are also 
tools available to automate parts of an FMEA analysis, see 
[10]. All these methods will collectively be called Failure 
Mode Analysis methods, or FMA methods for short, in this 
paper. An overview of some methods is available in [2]. 
GTST is described in [9], and FTA is described in [1]. 

A problem with many of these methods is that it is not 
possible to analyze several failures at the same time. Also, 
since the methods are mostly manual, it is possible to miss 
important scenarios during the analysis. Another important 
aspect is what will happen if the process is changed — how 
will the new system behave? Are the previously obtained 
results still valid for the new process? These questions can 
be difficult to answer, and they may require that the whole 
analysis be done all over again. 

Model-based methods have an advantage in this 
scenario, especially with computer support. The part 
requiring most work — the construction of the model — is 
already done. What is needed is to change the part of the 
model that is affected by the restructuring of the process, 
after which all the original cases plus any new ones may be 
evaluated again. This will require less time and effort 
compared to a manual analysis, since the analysis itself is 
mostly automated. 

What is described in this paper is a new method for 
failure mode analysis based on Multilevel Flow Models 
(MFM) [8]. MFM is a graphical modeling language for 
systems of flows of mass, energy, or information, and is a 

good base for several diagnosis algorithms, such as alarm 
analysis and measurement validation, see [3]. Thus, if an 
MFM model of the system exists, it can be used for several 
other diagnosis algorithms, thereby increasing the value of 
the model. The FMA method developed for MFM has many 
nice properties, such as the possibility for on-line prediction 
of failures in real time, and it would make a nice 
complement to the traditional FMA methods. 

II. ABOUT FAILURE MODE ANALYSIS 

The purpose of performing a failure mode analysis is to 
investigate the effects of one or several failures in a system. 
This can be done using several methods, among the most 
well-known are FMEA and FTA (see part I). The general 
idea with these methods is to find all possible failures of a 
system, and to relate these to each other so that the effects 
or causes of a fault can be determined. This can be done 
using a graph, such as the one in Figure 1. Here, the faults 
numbered 1 to 4 are called “basic faults,” and the 
combination of one or several basic faults leads to larger 
faults. The analysis is then performed by starting with a 
large fault, and then investigating the tree to find the basic 
faults leading to this failure. 

Fault #1
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Figure 1. An example of a fault tree. 

A shortcoming with the common methods for failure 
mode analysis is that the analysis is often done during the 
design phase for the system, and the results of the analysis 
are not easily retrievable by the operators during operation. 
It may also be the case that some of the failure modes are 
not analyzed, due to insufficient effort in the analysis. With 
these thoughts in mind, it is easy to see that an on-line, real 
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time FMA system would be advantageous. Such a system 
would be able to provide the operators with predictions of 
future failures based on the current state of the system. The 
FMA algorithm for MFM is capable of both off-line and 
on-line analysis, and could be used in both the design phase 
for a system, and when the system is running. 

III. ABOUT MFM 

Multilevel Flow Models were invented by professor Morten 
Lind [8], and they are primarily used for modeling goals 
and functions and their relations of technical systems. 
However, the MFM models make an excellent base for 
diagnostic reasoning, and several algorithms have been 
developed. MFM models describe the goals and functions 
of a system. The goals describe the purposes of running the 
system (the answer to the question “why?”), and the 
functions describe the capabilities of the system (the answer 
to the question “how?”). The functions are connected in 
terms of flows of mass, energy, or information. The flow 
structures are connected into networks, to which the goals 
are attached. The functions are realized by components, 
which are the physical objects in a system. 

The connection between the networks and the goals are 
called achieve relations, because they indicate that goals are 
achieved when the flow functions in the connected 
networks are working. There are also condition relations, 
which tells that a certain goal has to be achieved for the 
conditioned function to be available. 

Goals 
The goals in an MFM model describe the intentional goals 
of running a system. Examples of goals are “keep the water 
level within an acceptable range,” “produce electrical 
power,” and “cool the pump.” Without knowing the true 
goals of running a system, it is practically impossible to 
build a good MFM model of the system, since the whole 
purpose of the system is to fulfill the goals. 

Components 
The components represent the physical structures of a 
system. This can be, for example, a piece of pipe, a water 
tank, or an accumulator. The components are usually not 
shown in an MFM model. 

Functions 
The functions in MFM represent the capabilities of a 
system, such as “transport water,” “supply electricity,” or 
“prevent transport of radiation.” The functions may or may 
not be associated with a physical component in the system. 
A component may also be associated with several functions. 
An electrical pump, for example, may have both the 
function of transporting water, and the function of acting as 
a sink for electrical energy. The MFM functions are these: 

 
• A source is  a function that is capable of providing an 

unlimited amount of mass or energy. 
• A sink  is a function that acts as a drain of mass or 

energy. 

• A transport is a function that is capable of transporting 
mass, energy, or information. 

• A barrier is a function that is capable of preventing the 
transport of mass, energy, or information. 

• A storage is a function that is capable of storing mass 
or energy. 

• A balance is a function that connects one or more 
inflows to one or more outflows. 

• An observer is a function that translates sensor values 
to information. 

• A decision  is a function that represents control actions 
by humans or automatic controllers. 

• An actor is a function that can transform information 
into physical actions. 

• A manager is a function that is used to represent 
management of a system, for example PID-controllers, 
human operators, etc. 
 
These functions are shown in Figure 2. 
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Figure 2. The symbols that represent MFM 
functions. 

Relations 
A set of connected flow functions is called a network . To 
the networks, goals can be connected via achieve relations. 
When a certain condition is met (such as “all the functions 
in the network are working properly”), the connected goals 
are said to be achieved. 

In order for a certain function to be available, some 
goals may have to be achieved. This is expressed by using 
condition relations. These relations connect a goal with a 
function. There may be several conditions emanating from a 
goal, and several conditions may be connected to a 
function. 

In order to express management functions, there is also 
a relation called an achieve-by-management relation . This 
is used to express the fact that the flow functions need some 
kind of management (automatic or by an operator) to 
function as designed. 

These relations are shown in Figure 3. 
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Figure 3. The relations between the MFM objects. 



An Example of an MFM Model 
To illustrate how MFM is used, an example is presented 
here. The system, which is shown in Figure 4, consists of an 
engine, and a cooling system. The cooling fluid is pumped 
by an electrical pump, and the pump needs lubrication in 
order to work. The engine runs o n gasoline and oxygen, and 
if the cooling system breaks down, the engine will overheat 
and stop functioning. The cooling fluid in this system is 
water. 

Power
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Lubricant

Engine

Pump

Oxygen

 
Figure 4. An engine which runs on gasoline and 
oxygen. The engine needs a cooling system, and 
the circulator pump in the cooling system needs 
electrical power and lubricant. 

This is not an example taken from a real system, but it 
is adequate for demonstration purposes. In order to create 
an MFM model of this system, the important questions to 
ask are “what are the goals of the system,” and “what 
functions are available in the system.” Several goals can be 
found for this system, but in this case let us concentrate on 
these five: 

 
• Keep engine running. This is the main goal of the 

system. 
• Supply gas. Gasoline is needed for the engine to work. 
• Cool engine. The engine needs cooling in order to 

work. 
• Lubricate pump. The pump needs lubrication. 
• Supply power to pump. The pump needs electrical 

power. 
 
The functions that can be found in this model are for 

example “gasoline supply,” “gasoline transport,” “water 
transport,” and “lubricant source.” An MFM model of this 
system is shown in Figure 5. 

The network marked “E1” is a model of the energy 
balance in the engine. To the left are two sources of energy. 
The top source is the oxygen supply (the air), and the 
bottom source is the gasoline supply. In the middle of the 
network, there is an energy balance where the chemical 
energy of the gasoline and oxygen is transformed into 
kinetic energy and heat energy. The kinetic energy is 
absorbed by the top sink, and the heat energy is absorbed by 
the bottom sink. If all of these functions work, the top goal 
(“keep engine running”) is achieved. 

There are two conditions going up to the top network. 
The one to the left states that in order for the chemical 

energy of the gasoline to be available, the gasoline transport 
from the tank to the engine must be working. The one to the 
right states that the heat energy sink can not work unless the 
cooling system is working. 
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Figure 5. An MFM model of the example system. 

The network marked “M1” is a model of the physical 
transport of gasoline from the tank to the engine. The 
network marked “M3” is a model of the physical transport 
of lubricant to the pump. The network marked “E2” is a 
model of the transport of electrical power to the pump. 

The network marked “M2,” finally, is a model of the 
circulation of water in the cooling system. The leftmost 
transport in the network is a model of the pump, and the 
storage in the middle is a model of the heat exchanger in the 
engine. Both the source function and the sink function are 
models of the other heat exchanger element. This could of 
course be expressed by modeling the source and the sink in 
this network as a single storage, and creating a circular flow 
in the network instead of a straight one, but in this model 
the straight flow was chosen. 

IV. ALGORITHMS FOR MFM 

Several algorithms and methods have been developed for 
use with MFM models. Three of these, measurement 
validation, fault diagnosis, and alarm analysis, by Larsson 
[3, 5], have been implemented in the MFM Toolbox, a 
program for Windows 95 and NT. The MFM Toolbox is a 
tool for creating, editing and testing MFM models, and is a 
good base for adding new algorithms. 

The measurement validation algorithm uses measured 
flow values together with the MFM model to check that the 
flow values are consistent with the model. The fault 
diagnosis algorithm is similar to a backward chaining 
expert system, but the inherent structure of an MFM model 
guarantee that the diagnosis will be completed in linear (or 
sub-linear) time. This is advantageous for real time systems, 
see [4]. The algorithms have successfully been used in 
several projects, see [6, 7]. 



The alarm analysis algorithm will be described in 
detail, because the FMA algorithm relies on certain aspects 
of this algorithm. 

Alarm Analysis Using MFM 
Most industrial processes are equipped with a large number 
of sensors. The sensors are all connected to some form of 
alarm, so that the operators can know when something goes 
wrong. However, in case of a major fault, many of the 
alarms may trigger at the same time. This may overload the 
operators with alarms, and the real cause of the fault may be 
drowned among all the secondary faults. This is a 
potentially dangerous situation, and the alarm analysis 
algorithm for MFM is designed to separate the primary 
faults from the secondary faults in order to reduce the 
number of alarms presented to the operator. 

The algorithm works by associating discrete alarm 
states, such as “low flow” and “high volume,” with each 
flow function in the MFM model. Due to the semantic 
interpretations of the MFM flow functions, it is possible to 
conclude that certain faults may cause consequential faults 
in connected flow functions. The method uses a set of 
causation rules to check each pair of flow functions, to 
separate the faults that must be primary from the faults that 
may be consequences of the primary faults. However, the 
method does not guarantee that the faults marked as 
secondary are not in fact primary faults. There can be 
hidden primary faults that look as if they were caused by 
another primary fault, and which are therefore classified as 
secondary. Therefore, the algorithm only sorts the faults 
into the classes “primary” and “secondary or hidden 
primary.” 

An example of how the algorithm works is given 
below. Figure 6 describes a closed tank connected to a 
pump. 

 

Figure 6. A closed tank, with an inflow and an 
outflow. The outflow of the tank is connected to a 
pump. 

In this simple system, it is reasonable to assume that a 
too low volume in the tank may cause a too low flow 
through the pump. In addition, a too low flow through the 
pump may cause a too high volume in the tank. There is 
also the possibility that a too high volume in the tank may 
cause a too high flow through the pump, and that a too high 
flow through the pump may cause a too low volume in the 
tank. These four causation rules describe how one fault 
may cause another. 

Now, assume that the tank becomes empty, and 
therefore a level alarm is activated. Because of the low level 
in the tank, the pump flow will become too low, and 
activate another alarm. By using the first rule above, it is 
possible to conclude that the low volume in the tank is the 

cause for both alarms, the primary fault, whereas the low 
flow through the pump is a consequential, or secondary 
fault. The alarm analysis algorithm uses a set of rules like 
these for every legal MFM connection to find out which 
alarms are primary and which are secondary. 

In the MFM representation, the situation described here 
would be modeled like in Figure 7. 

Tank Pump
 

Figure 7. A model of the tank-pump system. 

The MFM functions have, as described above, 
associated alarm states. The storage function can be in one 
of three alarm states, namely “normal,” “high volume” 
(hivol), or “low volume” (lovol). The transport function can 
be in the states “normal,” “high flow” (hiflow), or “low 
flow” (loflow). The states are set by rules of the following 
form: “if the flow through the transport is less than a 
threshold value flo, set the alarm state of the transport to 
loflow .” The threshold value can be statically set in 
advance, or updated dynamically for example when the 
state of the process changes. 

The causation rules for the tank-pump system can now 
be written using only MFM functions and their associated 
alarm states: 

 
1. A storage lovol  may cause a downstream transport to 

have a loflow . 
2. A transport loflow may cause an upstream storage to 

have a hivol. 
3. A storage hivol  may cause a downstream transport to 

have a hiflow . 
4. A transport hiflow may cause an upstream storage to 

have a lovol. 
 
Similar rules have been derived for all legal MFM 

connections, and they are described in detail in [3, 5]. Since 
there are only a limited number of legal MFM connections 
and a discrete number of states, it is possible to store the 
causation rules in a table. The alarm analysis algorithm 
looks at each pair of MFM functions, and if both functions 
are in an alarmed state, the table is used to conclude which 
function has a primary alarm, and which has a secondary 
(consequential) alarm. If only one of the two functions is 
alarmed, the alarmed function is primary. 

A special case occurs when a function does not have a 
connected sensor (the function is said to be unmeasured). 
Since it is then impossible to know the real state of the 
function, the alarm analysis algorithm uses the state of the 
connected functions to guess the state of the unmeasured 
function. This is done using the same table as described 
above, and the method is called consequence propagation . 
For example, in the situation described above, if the flow 
through the pump is not measured and the volume in the 
tank is low, the consequence propagation rules will guess 
that the flow through the pump is low. 

It should be noted that because of the inherent structure 
of the MFM models, it is always sufficient to only look at 



two connected functions at a time. This is important, since 
it allows the complexity of the algorithm to be kept linear, 
or even sub-linear, with regard to the size of the model. 

V. FAILURE MODE ANALYSIS USING MFM 

The failure mode analysis I have developed for MFM is 
based on the consequence propagation used in the alarm 
analysis algorithm by Larsson [3], expanded with timing 
information associated with condition relations and 
storages. An important fact here is that the consequence 
propagation in the alarm analysis algorithm will stop as 
soon as a function with a sensor reading which is in the 
normal range is found. In the FMA algorithm, the 
consequence propagation will not stop until the whole 
model has been searched, because of the assumption that 
the functions that seem to be working now may stop 
working in the future. The motives for associating the 
timing information with only storages and condition 
relations were: 

 
• Failures will take time to propagate between MFM 

networks. 
• Storages often have an intrinsic capability to delay the 

propagation of failures within a network. 
• Adding time delay information to all functions and 

relations would be unfeasible in terms of modeling 
effort. 
 
The points above may be debatable, since there are 

most often propagation delays in other functions as well. 
However, these objects were carefully chosen because the 
method will give good results without any serious 
drawbacks with this setup. 

The timing information needed for an analysis must be 
either derived from simulated cases, derived from stored 
real process data, or estimated by hand. Often, the last 
option is the only one available, but the method may result 
in useful data even if the exact timings are slightly wrong. 
The same problems arise for all FMA methods that are 
based on timings, so this is not in any way unique for the 
MFM version. The method described here has been 
implemented in a version of the MFM Toolbox, see section 
IV. 

Assignment of Timing Information 
When the MFM model is built in the MFM Toolbox, it is 
possible to assign timing information to each storage and to 
each condition relation. In the current version of the 
algorithm, all conditions emanating from the same goal will 
have the same delay. This is currently under evaluation, and 
may be changed in the future so that each condition has its 
own timing delay. The timings are printed next to the 
function, as shown in Figure 8. 

Here, the following is assumed: 
 

• If the gasoline support fails, the engine will stop 
directly. 

• If the engine cooling fails, the engine will run for 
twenty minutes. 

• If the lubrication of the pump stops, the pump will fail 
after ten minutes. 

• If the power to the pump fails, the pump will fail 
immediately. 

• If the pump fails, the stored water in the engines heat 
exchanger will last for five minutes. 
 
These timings are not taken from any real situation, but 

they are adequate for this example. 
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Figure 8. An MFM model of the engine with 
timing information visible. 

An FMA Run 
After the timing information is entered into the model, it is 
possible to run test cases. This is done in the following way: 
first, the user inputs the start state (the state of the system at 
time zero), by asserting failures in one or more functions. 
Then, the analysis is started by a user command, and the 
result is presented on the screen. An example of this is 
shown in Figure 9. Here, the initial failure is that the 
lubricant has run out. The result of this is that the pump will 
fail due to lack of lubricant, and after a while the engine 
will fail due to lack of cooling. After the complete FMA run 
has been performed, the program will collect these failures 
and generate a list of all functions with alarmed sensors, 
sorted in order of time -to-failure. This is exemplified in 
Figure 10. 

The Algorithm in Pseudocode 
The algorithm works by assigning new state informa tion to 
each function in the MFM model. The new information 
consists of a time stamp, called failure time, which holds 
information on when the function will fail. There is also a 
variable called current failure time , which is used during 
the traversal of the model. It is used to keep track of the 
current “time” in the system. In pseudocode, the algorithm 
for failure mode analysis looks like this: 

 



For each function with an alarmed sensor: 
• Set the failure time of the function to 0. 
• Propagate the alarms as far as possible according to the 

rules in the alarm analysis algorithm. Set the failure 
time of the currently examined function to the current 
failure time, if the function has not been reached before 
or if the failure time stored for the function is larger 
than the current failure time. 

• Update the current failure time when passing 
conditions and storages. 

• Stop the propagation if the failure time of the currently 
examined function is less than the current failure time. 
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Figure 9. Example of an FMA run. This is a 
situation where the lubricant runs out, and the 
impacts of this on the system. 

Results of Failure Mode Analysis
================================

T = 0
   F8: "Lubricant source"
   F9: "Lubricant transport"

T = 10
   F1: "Water pump"
   F2: "Engine heat exchanger"

T = 30
   F11: "Gasoline supply"
   F17: "Kinetic energy sink"
   F19: "Heat energy sink"  

Figure 10. The textual output from the FMA run. 
The measured MFM functions that failed are 
sorted in time order. The list of functions at time 
T = 0 are the initially failed functions. Here, the 
algorithm has predicted that, for example, the 
water pump will fail within ten minutes. 

VI. CONCLUSIONS 

A new method for failure mode analysis based on MFM has 
been developed. The method takes a given situation as 
input, and outputs a list of predicted time -to-failure values 

for the affected parts of the system. The method has certain 
advantages compared to traditional methods, for example 
the possibility to build a system for on-line real time failure 
prediction with this method. The algorithm has been 
implemented and tested in the MFM Toolbox, a program 
for editing and testing MFM models. 
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